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Segregation of granular media by diffusion and convection
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A diffusion-convection equation is used to model granular segregation within a mixture of particles of
different size, shape, or surface structure in a vertical vessel. Convection describes competition between
species in vertical direction whereas random nd&wking allows particles to exchange positions. For two
species it is shown that the moving grains converge to a unique distribution along the vertical scale. For more
than two species it is shown that at least one equilibrium distribution existse are examples with multiple
equilibrig). For a class of models with simple competition laws, uniqueness of the equilibrium in all dimen-
sions is shown.
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[. INTRODUCTION for sedimentation(see[23]). However, the Kynch model
does not contain a diffusion term. In particular, the simple
The Brazil nut effect is a well-known phenomenon in competition dynamics studied here corresponds to the
granular media: A mixture of two kinds of grains that differ Masliyah dynamics in the Kynch modéee[24]).
in size is filled into a verticalglas$ cylinder and then stired ~ The model studied in this paper is unrealistic insofar as
or shaken. The bigger grains tend to move up. In some send¥e assume that the proportion of empty space is constant
the smaller particles fall between the gaps of the bigger onedhroughout the vessel independently of the composition of
If the grains differ also in specific weight, shape, coarsenesie material. Besides, the particles cannot be deformed.
of the surface, etc., or if more than two kinds of grains areHence we do not allow for compaction or compressibility.
used, then the behavior may become more complex. It seenldiUs, the system should be seen as an attempt towards a
that there are not too many experimental results on segregé€neral model for segregation.
tion with more than two kinds or with a continuous distribu-  In Sec. Il we describe the model system and we introduce
tion of grains. the necessary invariance and conservation properties. In Sec.
However, the case of two types of particles has been stud!l we show that in the case of two species, there is a unique
ied by several authors. [ri—4] the particles are modeled as Stationary distribution of grains that depends only on the
hard spheres. Referendés6] treat the kinetic theory of bi- initial total masses of the two species. This stationary solu-
nary mixtures of Spherical partic'esl [814] a Coo”ng pro- tion is globa”y Stable, i.e., for any initial distribution within
cess is used to describe segregation, wheregg]ipattern  the vessel(given the total massgsthe solution of the
formation caused by vibration is investigated. The behaviofliffusion-convection system will approach this equilibrium.
of rolling matter on the surface of a heap has been extenn Sec. IV the case of more than two species is studied. We
sively studied(see, for exampld7,8]). In [9] an adaptation show that for any set of total masses there is at least one
of the Monte Carlo method is used to analyze size segreg&duilibrium solution. Simple examples with three species
tion that occurs by shaking mixtures of two types of grainsshow that the equilibrium may not be unique. In Sec. V, we
while the system is cooling, i.e., constantly losing energyStudy a special model fan species with a simple competi-
Cellular automaton models are used [m_la to Study tion law. Here we can prove uniqueness. F|na”y, Sec. VI
stratification and pattern formation in poured mixtures. Ingives a brief discussion of the results.
[14—18 continuum models are used to explain segregation All proofs are deferred to the Appendix. In Sec. 1 of the
in surface flows and flowing avalanches, i.e., so-caked Appendix we indicate why a pure convection model would
netic sieving In [19] experiments and theory are comparednot do.
with respect to surface flows in two-dimensional silos, and in

[20] stratifica';ion is stut_jied experimentally. _Refgrences Il. THE MODEL
[21,22 deal with segregation and pattern formation in rotat-
ing drums. We consider a vessel in the form of a vertical cylinder of

Since the details of the interactions between several kindBeightl. We assume that the distribution of the material is
of particles will differ widely and are also not generally homogeneous in the horizontal direction, i.e., we assume a
known, we propose a heuristic model basedddfusionand  one-dimensional model. We represent the vessel by the in-
convection i.e., the model has the form of a diffusion- terval[0,|] wherex=0 corresponds to the bottom arer|
convection system. The idea is that the different spesies-  to the top. We assume there ardypes or species of par-
petewith each other for an appropriate position on a verticalticles numbered=1, . .. n. Letu;(t,x) be the density of the
scale via different convection rates and that random noiséth species at levek and timet. We collect these into a
gives sufficient freedom for grains to pass between othevector u=(u,, ...,u,)". Hereu is a column vector, the
grains. symbol T means transpose. We assume that the motion of

The present model has some relation to the Kynch modgparticles in the vertical direction, caused by shaking and the
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influence of gravity, can be described by diffusion and con4n order that the model be realistic, we have to impose two
vection. Diffusion is a randoniBrownian undirected mo- further requirements(i) the particle densities); are non-
tion, convection is directed and depends strongly on thaegative,(ii) at each space point and timet the particle
types of interacting particles and their relative densities. Welensities add up to 1.

understand the model in such a way that the diffusion term For these requirements to be fulfilled the following as-
accounts for the random effects of shaking that providesumptions on the diffusion rates and the vector field are suf-
space for convective motion, whereas the convection terrficient and also necessary.

incorporates effects of friction of grains and of small grains  (a) The diffusion rategwhich may depend on the vector

falling into the gaps between large graing25], [15]). of densitie$ are the same for all species, i.e., the diffusion
Let J;=J;(u,x) denote the flux of specigsat xe[0l],  matrix D(u) is a multipled(u)!l of the identity matrix.
i.e., the relative amount of particles of typpassing through (b) The diffusion rate is positived(u)>0.
an infinitesimal volume element per time. The equation gov- (c) =_,f;(u)=0. This ensures that particle densities al-
erning the change in concentration of spediésthen ways add up to one.
(d) u;=0 impliesf;(u)=0. This guarantees that concen-
i 1) trations cannot become negative.
ot ox’ (€) af;/aujl, ~o=0 fori=j.

) _ With these hypotheses, the system and the boundary con-
For our purposes we split the fluk (with components);)  dition read

into a diffusional partl® and a convectional paif. Thus Eq.

(1) becomesu;, = — (J% +J5,), where subscripts andx de- u=[d(u)u,—f(u)]y, (4)
note partial derivatives with respect to space and time coor-
dinates, respectively. Hence the model assumes the general d(u)u,—f(u)=0 at x=0 and x=I. (5

form of a system of diffusion convection equations. We un- o o . N i
derline that this is a standard form of model that should bel € Positivity of the diffusion coefficienficondition (b)] is
applied when a more detailed descriptiransport equation, just the standard condition t_hat ensures that diffusion is not
Boltzmann equation, particle modéé not available or not degenerate. In the Appendix we show that the conditions
applicable for lack of estimates for experimental parameterd®—(€) indeed yield conservation of positivity and mass, as
In fact, for most detailed models diffusion-convection equa-"équested. _ _ _
tions occur as limiting cases for rapid motion and frequent 1 he general case of species leads deeply into the quali-

changes of direction. The model must be written in diver-tative analysis of diffusion convection equations, and per-
gence form because of conservation of mass. haps we need further insights into the mechanics of segrega-

If we chooseJE’:—Di(u)uiX and J¢=1f,(u) for some tion to choose the right functiorfs Therefore, we proceed to

vector-valued functiori with componentd;, the model as- the most importgnt speci.al case of two lspecies qnd later we
sumes the general form return to a special equation for=2 species of grains.

Ui =[Dj(uui—fi(w)],, i=1,...n. Ill. THE CASE OF TWO SPECIES

In the case of two species we can, in viewaf; =1, put
U;=u, Uup,=1-—u and f;(uq,uy)="f;(u,1—u)="f(u). Then
we get the scalar diffusion-convection equation

We assume that the functiom® and f; are twice continu-
ously differentiable. We collect the diffusion coefficients
into a diagonal matribD (u) =[D;(u) §;;] and we interpret
the functionsf;(u) as components of a vector fiel(u). In u=[d(u)u,—f(u)], (6)
vector notation the system assumes the form
with the boundary condition
U=[D(uux—f(u)lx. )
d(u)u,—f(u)=0 at x=0 and x=1. (7)

The model does not account for empty space between grains. ) N
It is tacitly assumed that the grains fill the volume com-AS in the general case, we require conditi¢as-(e) above.
p|ete|y or, equiva|ent|y, that empw space is even|y distrib_ln the casen=2 these assume the fOIIOWing Simpler form:
uted throughout the vessel whatever the distribution of spel@,(b) d(u)>0; (c) says thatf,= —f;, hence becomes re-
cies is. Although this assumption is not realistic, the model iglundant;(d) f(0)=f(1)=0. (e) is a consequence af) for
a step toward the study of mixtures. More complex modeld1=2.
would allow for variable distributions of empty space and First we look for stationary solutions. From H@) we get
hence also for compaction effects. [d(u)u,—f(u)]x=0, henced(u)u,—f(u) is a constant that

System(2) must be supplied with boundary conditions. vanishes in view of the boundary conditi¢f). Hence sta-
As we shall see in a moment, the requirement of conservaionary solutions correspond to solutions of the ordinary dif-
tion of total mass for each species determines the boundaffg¢rential equation
condition uniquely. We require

D(uu,—f(uy=0 at x=0 and x=l. (3 axu= 9w (8)
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where 1

g(u)=f(u)/d(u). ©)

Of course we have 0.8

g(0)=g(1)=0 (10)

by condition(d). Before investigating the qualitative behav- 0.6

ior of the model we discuss what we can expect. In the case

of only two species, i.e., in the case of one scalar differential ut)
0.4

equation, the process of reshuffling by convection and diffu-

sion should lead to a stationary distribution. However, since

we can think of many different initial distributions with dif-

ferent proportions of species, there must be many stationary
solutions. But we can show that for any given proportion of 0.2
the total masses of the two species there is exactly one equi-
librium. This fact is expressed in the first proposition.

Proposition1. Letul be the total amount of the first spe-

cies in the vessel, 0 0.2 04 , 06 0.8 1
! — FIG. 1. The layers of stationary solutions fbfu)=u(1—u),
fou(x)dx=ul. 1D d(u)=1, andl=1. Each curve represents the local proportion of

the first one of two species as a function of the heiga{0,1] in

the vesselx has units of length, whereagx) represents a relative
concentration and is thus dimensionless. The family of curves is
parametrized either by the initial value or by the total mass.

For any numben e[0,1] the differential equation8) has
exactly one solution satisfying conditigt1).
The proof is given in the Appendix. Next we discuss the
behavior of the time-dependent problem, E@s.and(7). In
the Appendix we show the following result. u(x)= u
Proposition2. For any initial distribution of species 1 the (1—-u®e ¥P 40’
time-dependent solution of Eq&) and(7) converges to the
unique equilibrium distribution characterized by the totalwhich is represented in Fig. 2. We observe that in the sta-

0

proportionUof species 1. tionary solution the first substanecg is concentrated at the
As an example we choosKu)=D = const and bottom of the vessel whereas has its maximum concen-
f(uy=u(l—-u), (12 1

which corresponds tdq(uq,u,)=—"f,(us,u,)=u;U,, thus
saying that whenever two particles of type 1 and 2 interact,
the type 1 particle is pushed up and the type 2 particle is 0.81
pushed down. In Sec. V it is shown that this dynamics is species u,
equivalent to the competitive dynamics forx=2 and a spe-
cial choice of the parameters. Hence we can think of the type
2 particles as having Stokes’s settling velocity with respect
to the type 1 particles. Figure 1 shows the typical behavior of
the species distribution for a functidnof type (12). Solu-
tions for very small and very large proportion wf are con- ]
vex or concave, respectively, intermediate solutions show speciles U
arctanshapes. The figure shows clearly that the solutions of
the ordinary differential equation can be parametrized either
by their initial data, i.e., their values at=0, or by the total 0.2

massu. If we use Eq(12) in our model, the ordinary differ-
ential equation(8),

0.6 1

u(x)

ey

1 0 ' ' T '
w'= su(1-u), 13 02 04 06 08

FIG. 2. Segregation of two types of particles due to diffusion
is a Riccati equatiortfor details sed26]). The solution for  and convection. Systett) with d(u)=D=0.1 andu(0)=0.01. x
the initial datumu®e[0,1] is has dimensions of lengtli(x) is dimensionless.
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1 IV. STATIONARY SOLUTIONS IN THE CASE OF n
] SPECIES
The stationary solutions of syste®) with boundary con-
0.8- ditions (3) are solutions of the system of ordinary differential
1 equations
u=g(u), (15
0.6
— o where g(u)=f(u)/d(u). Let G be the solution operator of
u () (15), i.e.,
0.4 d
g1 (LW =9(G(t,w),
0.2 G(0,u)=u.
From hypothesesc) and (d) it follows that the functiong
satisfies
0 . . , ,
0.2 0.4 o 0.6 0.8 1 U= 0=g;(u) =0, (16)

FIG. 3. The total mass of speciesas a function of the initial
valueu®. Parameter value® =1 andl=1. The resulting map is a E gi(u)=0. 17)
bijection of the interval 0,1]. Both coordinates represent relative

concentrations without units. . . . .
Define the simplexgeneralized triangle or tetrahedyoof

probability vectors
tration at the top. We give the exact expression for the total
mass of species=u, as a function of the initial valua® as "
S={ueR"u=0, i=1,...n, > u=1{.
=1

Jlu(x)dx= j' u® dx The setSis the set of local distributions of thespecies. The
0 0(1—u%e P40 conditions(16) and (17) ensure that solutions of Eq&l5)
starting inSremain inSfor all timest (positive or negative
=D- In[(1—u®+uC"P]. (140 HenceSis invariant with respect to the flow of E¢L5). If
G(t,u), 0=<t=<l is the solution of Eq.(15 starting from
u(0)=u, then

The dependence af on u® is shown in Fig. 3. We empha- |

size at this point that the example discussed in this section in f G(t,u)dt=ul (18)

a certain sense characterizes the qualitative behavianypf 0

system of the forn{(6). In a general situation some profiles o

may be increasing, some decreasing, but they always form @defines the vectan of total masses of the species. The next

set of nonintersecting layers. theorem shows that for any distributiore S of total masses
At the end of the section we briefly discuss the generathere isat least onestationary solution(exactly one in the

case of more than two types of grains, thus underlining theasen=2 by Proposition L

particular nature of the case=2. Forn=3 we cannot rule Theorem 1Assume Eqs(16) and (17). For everyue S

out that the process of reshuffling by convection and diffuthere is at least onee S such that Eq(18) holds.

sion leads to rather complicated dynamics as, for example, The proof is given in the Appendix. In general there will

oscillatory behavior. One could imagine as well that the syshe more than one stationary solution for a given mass distri-

tem approaches different stationary solutions with the sampution. This can be seen from the following argument. As-

proportion of total masses depending on the initial distribu-sume the systenil5) has a nonconstant periodic solution

tion. Such phenomena do not occur for 2. Stationary so- with minimal periodw>0. Choosd = w. Then for all points

lutions can still be parametrized by their initial ddts en- y on the periodic orbit we get the same value In this

sured by the existence and uniqueness theorem for ordinagkample we can extend the function frg®, ] periodically

differential equations but there may be several solutions for to all of the real axis to get an infinitely high vessel with a

a given vector of proportions of total masses. A more deperiodic distribution of species. Then the phase of this dis-

tailed analysis of stationary solutions in the general case iibution can be chosen arbitrarily. We do not claim that such

reported in the following section. a choice of the functioffi or g is realistic.
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We reformulate the result in terms of boundary value VI. DISCUSSION
problems of second order systems of ordinary differential

equations. Theorem 1 says that the boundary value problem Th? dlffusmn-convecnon 'T‘Ode' d|scu§sed n this paper
describes segregation of particles of varying size and physi-

cal qualities such as specific density of the material or sur-
face structure in a vertical vessel. In the case of only two
competingspecies the dynamics are predicted to be relatively

v=g(v), v(0)=0, v(I)=ul

has at least one solution Bfor everyue S. simple. Stationary solutions are monotone functions, and ev-
ery time-dependent solution eventually reaches a stable state.
V. A SIMPLE COMPETITION LAW In the general case of three or more species the dynamics can

exhibit far more complicated behavior. Stationary states are
. , . ; . in general not monotone any more and there can be different
show uniqueness of the stationary state in any dimension gaiionary solutions for a given proportion of total masses in
Here we assume that particles of it species have pre-  yhe yessel. However, for every given proportion of total

ferred velocity m; and that their actual velocity is defined by nagses there is at least one stationary distribution. Unique-
the balance of mass. In other words, the actual velocity ahess can be shown under relatively strong conditions on the
each point is the difference of its preferred velocity and the.,nyection functiorf. An important example is the competi-
mean velocity of all particles at that space point. We choosge kinetics corresponding to the Masliyah kinetics in sedi-

There is one choice of the vector fidldor which we can

D=const and mentation models or the so-callegplicator kineticsin bio-
n logical models. Our model is unrealistic insofar as it does not
f(u)y=Mu— 2 (Mu); |u, (19) account for compaction or compressibility effects.
i=1

whereM = (m; §;;) is a diagonal matrix of order and them, ACKNOWLEDGEMENT

are strictly positive constants. Without loss of generality we  The author would like to thank K. P. Hadeler for provid-
assumen;>m,>- - ->m,. In coordinate notation the ordi- ing the opening idea for the model and major contributions

nary differential equatioril5) reads along the way.
d 1 !
U= p| mui- kz,l MU | Ui | (20) APPENDIX

1. The hyperbolic problem
This equation is just a renormalization of the linear system ¢ \\« consider a system of the form of E€®) without
u=Mu. In theoretical ecology this type of system has beenyiffusion, i.e., a model with pure convection, then we get a

called thereplicator equation(for an overview on replicator totally different problem. For example, consider the case

equations see for examplg27]). The solution of Eq(20)  =2. Equation(6) becomes the conservation law
can be explicitly given as

u;+f(u),=0. (A2)
emiX/DUi(O)
U= ' 2Y) The characteristic differential equatiofsith parameters)
121 e™*Pu;(0) aret=1, x=f'(u), u=0, hence the characteristic curves are
straight linesx=xy+ f'(ug) (t—tp). If the functionuy(x) is
Then the equation not monotone, then the behavior can be very complicated. If,

however, we letD(u) go to zero, then we get aiscosity
solution In particular, the stationary solution becomes a step

I emiX/DUi o !
f—dxzmi (22 function.

n
0
2 eij/DUj(O)
=1 2. Conservation of mass and positivity

establishes the connection between stationary solutions and From the differential equatiot2) and the boundary con-

total masses. dition (3) we get
Theorem 2 Consider the systert®) with boundary con- | |
dition (3) where the nonlinearity is given by E@l9). For _Joudxz fO[D(u)ux_f(u)]de:[D(u)ux_f(u)]||0:0_

any choiceue S of the total masses there is exactly one
stationary solution.

The proof is given in the Appendix.

If we choose n=2 then f;(u;,us)=myu;—(myu; Hence total mass is preserved. Next, in view of Hds.and
+myus)u;=(m;—m,)u(1—uy). Hence we get essentially (5) and hypothesigc), the scalar functiorzu; satisfies the
Eqg. (12), up to the constant factan; —m,. diffusion equation

(A2)
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ously on the initial datai® and we have~(0)=0, F(1)=I
(A3)  in view of Eq. (10). As a consequence, the mappiFgis
X onto.

(2 Ui>t22 Uit=

d(u)(Z ui)x

and the boundary condition

(E ui)x<0>=

4. Proof of Proposition 2

Define the function of two variablex(t),

> ui) (=0. (A4)
x vi=d(uu,—f(u).

We haveEu?(x)El. Hence both the given functiamand  Then
the function=1 satisfy the differential equatid®3) and the , ,
boundary condition(A4), and therefore they are identical, ve=d"(Wuu,d(u)u,—f(uug,
2u;(t,x)=1. This shows that everywhere masses add up to I
X Mt
Now we sketch the proof that positivity is preserved. Thegng thus
differential equation(2) reads in component notation
vi=a(t,X)vytb(t,X)vy (A5)
Uir=[d’(u) - U Jui+d(U) Ui — [ (U) - u,]. ]
=l Ui L «J with a(t,x) =d(u(t,x)), b(t,x)=d’ (u)u,—f'(u). The coef-
Notice that the brackets are inner products. Suppose that 8fi€nts a and b are bounded. Clearly, vanishes on the
time t=t theith componenu; vanishes for the first time at b_o_undary{O,I} In view of Eq._(?). With the smoothness con-
— ) — — ditions requested, the solutiangoes to zero together with
x=xe[0J]]. First assume €&x<l. Then u;(t,x)=0, its space derivativé [28], p. 158, Theorem )L

Uir(t,X) <0, Uix(t,X)=0. Hence at this point We point out the following fact: The functior
. =d(u)u,—f(u) satisfies Eq(A5). Suppose at timé=0
J i (9UJ
uit:d(u)uixx_j# au; % d(u)u,=f(u) (AB)

o N ) ~ [or d(u)u,=<f(u)]. Then by the comparison principle, the
The left-hand side is nOﬂpOSltlve, the first term on the rlght'same inequa“ty holds for all posmwe |f, for examp|e,f is

hand side is non-negative, and the second term on the righfron-negativesee, for example, Sec. Jland Eq.(A6) holds
hand side vanishes in view of propef®). Hence we would jnjtially, then u will be monotone inx for all time.

have a contradiction if one of the inequalities were strict.
This argument shows how propertg) enters. Next assume 5. Proof of Theorem 1

x=0 (or x=1). Thenu(t.,x) goes 1o zera from positivg yal— Under the hypotheses of Sec. Il the system lives on the
ues, and so d_og&(t_’x) in view of the boundary condition. simplexS. In the following argument we use the topological
It seems that it isinlikely thatu andu, pass through zero at degree(see[31]). LetL be some positive numbéthe largest

the same time. _ _ height of the vessel we are interesteyl iDefine the function
There is a well-developed machinery for maximum a”dH:[O L]XR"—R" by

comparison theorems for parabolic equations and for getting

strict inequalities from weak inequalities by using compari- 17!
son functions(see[28—30). It appears that the results in H(|,U)=|—J’ G(s,u)ds for 1>0, (AT)
these monographs apply only to standard Dirichlet or Neu- 0
mann conditions or to boundary conditions of the third kind H(Ou)=u. (A8)

with strong monotonicity properties. For our type of bound-
ary condition we had to use a specially designed comparisomhe functionH is continuous and it magO,L]XS into S,

function and some local estimates. H(0,-) is the identity.
LetuedS, i.e.,u;=0 for some. ThenG;(l,u)=0 for the
3. Proof of Proposition 1 samei and hence als#d;(l,u)=0. Conversely, leH(l,u)

€ dS for somel and u. ThenH;(l,u)=0 for somei and
hencef{)Gi(t,u)dt=0 or, equivalently,G;(t,u)=0 for all
te[0/]. Thenu;=0, which meansaie JS.

In short,H(l,-) maps the interioB° of Sinto the interior
and the boundarydS into itself. Even each lower-

We note that conditior{10) ensures that every solution
u(x) of Eqg. (8) with initial condition u®=u(0)e M:
=[0,1] never leaved\. By the existence and uniqueness
theorem for ordinary differential equations, E§) has ex-

H 0
actly_one solution for e_ach <M. By the same argument chensional face of the boundary is mapped into itself.
solution curves cannot intersect and thus lie one above eac =

other in the way indicated in Fig. 1. Each solution is either NOW letue S°. ThenH(l,u)#u for all ue JS. ThlE'H
increasing or decreasing or constant. In other words, théefines a homotopy d and the degree deg(l,-),S,u) is

mappingF:u%-u is strictly monotone and therefore one to well defined for alll [O,L]. Since defH(0,-),S,ul=1, we
one. Furthermore, the solutions of E®) depend continu- have defH(l,-),S,u]=1 for all Ie[0L] and hence the
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equationH(I,u)=Uhas at least one zero me S for all | dH,; X x
e[0,L] (and hence for all positive). au f E ey | dx>0,
Now assumei e dS. Thenu;=0 for somei. Then, in the ( E emkxuk)

above argument, repla&by the face ofS corresponding to

the positive components of.
In the general case=3 uniqueness does not hold.

oH; 1 eMTixy,
—=——f 5 dx<0, i#].
6. Proof of Theorem 2 au; I Jo

>, ey,

k=1

We can assum® =1. In this case the functiohi(l,-),
for >0, is given componentwise by

Ho(lu) = 1f‘ nem‘XU. dx. (A9) Thus_, J has positive diagonal elements and negative
off-diagonal elements. We have XH,(l,u)
Z ey =(AMJL[=Gi(t,u)]dt=0. Hence the row vector
- e=(1,...,1) is aleft eigenvector with eigenvalue 0 and
H(l,-) mapsS onto S (as shown in the proof of Theorem this eigenvector is perpendicular to the simp&xhe weak
4.1). Of courseH(0,u)=u on S as before. Hadamard criterion(or the Perron-Frobenius theorem for

Now we want to compute the Jacobian lfl,-) at a  positive matricesensures thak =0 is a simple eigenvalue.
pointue S. For that purpose we interpret Ef\9) as a map- Hence the restriction dfi to the simplexS has a Jacobiad

ping from R"—R" and later restrict to the s& The Jaco- with full rank n—1 andH(l,-) is a diffeomorphism oB.
bianJ has elements
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