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Segregation of granular media by diffusion and convection

Joel Braun
Fakultät für Mathematik, Universita¨t Tübingen, Auf der Morgenstelle 10, D-72076 Tu¨bingen, Germany

~Received 8 December 2000; published 27 June 2001!

A diffusion-convection equation is used to model granular segregation within a mixture of particles of
different size, shape, or surface structure in a vertical vessel. Convection describes competition between
species in vertical direction whereas random noise~shaking! allows particles to exchange positions. For two
species it is shown that the moving grains converge to a unique distribution along the vertical scale. For more
than two species it is shown that at least one equilibrium distribution exists~there are examples with multiple
equilibria!. For a class of models with simple competition laws, uniqueness of the equilibrium in all dimen-
sions is shown.

DOI: 10.1103/PhysRevE.64.011307 PACS number~s!: 45.70.Mg, 64.75.1g, 81.05.Rm, 83.50.Xa
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I. INTRODUCTION

The Brazil nut effect is a well-known phenomenon
granular media: A mixture of two kinds of grains that diff
in size is filled into a vertical~glass! cylinder and then stirred
or shaken. The bigger grains tend to move up. In some s
the smaller particles fall between the gaps of the bigger o
If the grains differ also in specific weight, shape, coarsen
of the surface, etc., or if more than two kinds of grains a
used, then the behavior may become more complex. It se
that there are not too many experimental results on segr
tion with more than two kinds or with a continuous distrib
tion of grains.

However, the case of two types of particles has been s
ied by several authors. In@1–4# the particles are modeled a
hard spheres. References@5,6# treat the kinetic theory of bi-
nary mixtures of spherical particles. In@3,4# a cooling pro-
cess is used to describe segregation, whereas in@2# pattern
formation caused by vibration is investigated. The behav
of rolling matter on the surface of a heap has been ex
sively studied~see, for example,@7,8#!. In @9# an adaptation
of the Monte Carlo method is used to analyze size segre
tion that occurs by shaking mixtures of two types of gra
while the system is cooling, i.e., constantly losing ener
Cellular automaton models are used in@10–13# to study
stratification and pattern formation in poured mixtures.
@14–18# continuum models are used to explain segrega
in surface flows and flowing avalanches, i.e., so-calledki-
netic sieving. In @19# experiments and theory are compar
with respect to surface flows in two-dimensional silos, and
@20# stratification is studied experimentally. Referenc
@21,22# deal with segregation and pattern formation in rot
ing drums.

Since the details of the interactions between several k
of particles will differ widely and are also not general
known, we propose a heuristic model based ondiffusionand
convection, i.e., the model has the form of a diffusion
convection system. The idea is that the different speciescom-
petewith each other for an appropriate position on a verti
scale via different convection rates and that random no
gives sufficient freedom for grains to pass between ot
grains.

The present model has some relation to the Kynch mo
1063-651X/2001/64~1!/011307~7!/$20.00 64 0113
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for sedimentation~see @23#!. However, the Kynch mode
does not contain a diffusion term. In particular, the simp
competition dynamics studied here corresponds to
Masliyah dynamics in the Kynch model~see@24#!.

The model studied in this paper is unrealistic insofar
we assume that the proportion of empty space is cons
throughout the vessel independently of the composition
the material. Besides, the particles cannot be deform
Hence we do not allow for compaction or compressibili
Thus, the system should be seen as an attempt towar
general model for segregation.

In Sec. II we describe the model system and we introd
the necessary invariance and conservation properties. In
III we show that in the case of two species, there is a uniq
stationary distribution of grains that depends only on
initial total masses of the two species. This stationary so
tion is globally stable, i.e., for any initial distribution within
the vessel~given the total masses! the solution of the
diffusion-convection system will approach this equilibrium
In Sec. IV the case of more than two species is studied.
show that for any set of total masses there is at least
equilibrium solution. Simple examples with three spec
show that the equilibrium may not be unique. In Sec. V,
study a special model forn species with a simple compet
tion law. Here we can prove uniqueness. Finally, Sec.
gives a brief discussion of the results.

All proofs are deferred to the Appendix. In Sec. 1 of t
Appendix we indicate why a pure convection model wou
not do.

II. THE MODEL

We consider a vessel in the form of a vertical cylinder
height l. We assume that the distribution of the material
homogeneous in the horizontal direction, i.e., we assum
one-dimensional model. We represent the vessel by the
terval @0,l # wherex50 corresponds to the bottom andx5 l
to the top. We assume there aren types or species of par
ticles numberedi 51, . . . ,n. Let ui(t,x) be the density of the
i th species at levelx and time t. We collect these into a
vector u5(u1 , . . . ,un)T. Here u is a column vector, the
symbol T means transpose. We assume that the motion
particles in the vertical direction, caused by shaking and
©2001 The American Physical Society07-1
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JOEL BRAUN PHYSICAL REVIEW E 64 011307
influence of gravity, can be described by diffusion and co
vection. Diffusion is a random~Brownian! undirected mo-
tion, convection is directed and depends strongly on
types of interacting particles and their relative densities.
understand the model in such a way that the diffusion te
accounts for the random effects of shaking that provi
space for convective motion, whereas the convection t
incorporates effects of friction of grains and of small gra
falling into the gaps between large grains~ @25#, @15#!.

Let Ji5Ji(u,x) denote the flux of speciesi at xP@0,l #,
i.e., the relative amount of particles of typei passing through
an infinitesimal volume element per time. The equation g
erning the change in concentration of speciesi is then

]ui

]t
52

]Ji

]x
. ~1!

For our purposes we split the fluxJ ~with componentsJi)
into a diffusional partJd and a convectional partJc. Thus Eq.
~1! becomesuit52(Jix

d 1Jix
c ), where subscriptst andx de-

note partial derivatives with respect to space and time co
dinates, respectively. Hence the model assumes the ge
form of a system of diffusion convection equations. We u
derline that this is a standard form of model that should
applied when a more detailed description~transport equation
Boltzmann equation, particle model! is not available or not
applicable for lack of estimates for experimental paramet
In fact, for most detailed models diffusion-convection equ
tions occur as limiting cases for rapid motion and frequ
changes of direction. The model must be written in div
gence form because of conservation of mass.

If we chooseJi
d52Di(u)uix and Ji

c5 f i(u) for some
vector-valued functionf with componentsf i , the model as-
sumes the general form

uit5@Di~u!uix2 f i~u!#x , i 51, . . . ,n.

We assume that the functionsDi and f i are twice continu-
ously differentiable. We collect the diffusion coefficien
into a diagonal matrixD(u)5@Di(u)d i j # and we interpret
the functionsf i(u) as components of a vector fieldf(u). In
vector notation the system assumes the form

ut5@D~u!ux2f~u!#x . ~2!

The model does not account for empty space between gr
It is tacitly assumed that the grains fill the volume co
pletely or, equivalently, that empty space is evenly distr
uted throughout the vessel whatever the distribution of s
cies is. Although this assumption is not realistic, the mode
a step toward the study of mixtures. More complex mod
would allow for variable distributions of empty space a
hence also for compaction effects.

System~2! must be supplied with boundary condition
As we shall see in a moment, the requirement of conse
tion of total mass for each species determines the boun
condition uniquely. We require

D~u!ux2f~u!50 at x50 and x5 l . ~3!
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In order that the model be realistic, we have to impose t
further requirements:~i! the particle densitiesui are non-
negative,~ii ! at each space pointx and time t the particle
densities add up to 1.

For these requirements to be fulfilled the following a
sumptions on the diffusion rates and the vector field are s
ficient and also necessary.

~a! The diffusion rates~which may depend on the vectoru
of densities! are the same for all species, i.e., the diffusi
matrix D(u) is a multipled(u)I of the identity matrix.

~b! The diffusion rate is positive,d(u).0.
~c! ( i 51

n f i(u)[0. This ensures that particle densities a
ways add up to one.

~d! ui50 implies f i(u)50. This guarantees that conce
trations cannot become negative.

~e! ] f i /]uj uui5050 for iÞ j .
With these hypotheses, the system and the boundary

dition read

ut5@d~u!ux2f~u!#x , ~4!

d~u!ux2f~u!50 at x50 and x5 l . ~5!

The positivity of the diffusion coefficient@condition ~b!# is
just the standard condition that ensures that diffusion is
degenerate. In the Appendix we show that the conditio
~a!–~e! indeed yield conservation of positivity and mass,
requested.

The general case ofn species leads deeply into the qua
tative analysis of diffusion convection equations, and p
haps we need further insights into the mechanics of segr
tion to choose the right functionsf. Therefore, we proceed to
the most important special case of two species and later
return to a special equation forn>2 species of grains.

III. THE CASE OF TWO SPECIES

In the case of two species we can, in view of(ui51, put
u15u, u2512u and f 1(u1 ,u2)5 f 1(u,12u)5 f (u). Then
we get the scalar diffusion-convection equation

ut5@d~u!ux2 f ~u!#x ~6!

with the boundary condition

d~u!ux2 f ~u!50 at x50 and x5 l . ~7!

As in the general case, we require conditions~a!–~e! above.
In the casen52 these assume the following simpler form
~a!,~b! d(u).0; ~c! says thatf 252 f 1, hence becomes re
dundant;~d! f (0)5 f (1)50. ~e! is a consequence of~d! for
n52.

First we look for stationary solutions. From Eq.~6! we get
@d(u)ux2 f (u)#x50, henced(u)ux2 f (u) is a constant that
vanishes in view of the boundary condition~7!. Hence sta-
tionary solutions correspond to solutions of the ordinary d
ferential equation

d

dx
u5g~u! ~8!
7-2
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SEGREGATION OF GRANULAR MEDIA BY DIFFUSION . . . PHYSICAL REVIEW E64 011307
where

g~u!5 f ~u!/d~u!. ~9!

Of course we have

g~0!5g~1!50 ~10!

by condition~d!. Before investigating the qualitative beha
ior of the model we discuss what we can expect. In the c
of only two species, i.e., in the case of one scalar differen
equation, the process of reshuffling by convection and di
sion should lead to a stationary distribution. However, sin
we can think of many different initial distributions with dif
ferent proportions of species, there must be many station
solutions. But we can show that for any given proportion
the total masses of the two species there is exactly one e
librium. This fact is expressed in the first proposition.

Proposition1. Let ūl be the total amount of the first spe
cies in the vessel,

E
0

l

u~x!dx5ūl . ~11!

For any numberūP@0,1# the differential equation~8! has
exactly one solution satisfying condition~11!.

The proof is given in the Appendix. Next we discuss t
behavior of the time-dependent problem, Eqs.~6! and~7!. In
the Appendix we show the following result.

Proposition2. For any initial distribution of species 1 th
time-dependent solution of Eqs.~6! and~7! converges to the
unique equilibrium distribution characterized by the to
proportionū of species 1.

As an example we choosed(u)[D5const and

f ~u!5u~12u!, ~12!

which corresponds tof 1(u1 ,u2)52 f 2(u1 ,u2)5u1u2, thus
saying that whenever two particles of type 1 and 2 intera
the type 1 particle is pushed up and the type 2 particle
pushed down. In Sec. V it is shown that this dynamics
equivalent to the competitive dynamics forn52 and a spe-
cial choice of the parameters. Hence we can think of the t
2 particles as having Stokes’s settling velocity with resp
to the type 1 particles. Figure 1 shows the typical behavio
the species distribution for a functionf of type ~12!. Solu-
tions for very small and very large proportion ofu1 are con-
vex or concave, respectively, intermediate solutions sh
arctan shapes. The figure shows clearly that the solutions
the ordinary differential equation can be parametrized eit
by their initial data, i.e., their values atx50, or by the total
massū. If we use Eq.~12! in our model, the ordinary differ-
ential equation~8!,

u85
1

D
u~12u!, ~13!

is a Riccati equation~for details see@26#!. The solution for
the initial datumu0P@0,1# is
01130
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u~x!5
u0

~12u0!e2x/D1u0
,

which is represented in Fig. 2. We observe that in the s
tionary solution the first substanceu1 is concentrated at the
bottom of the vessel whereasu2 has its maximum concen

FIG. 1. The layers of stationary solutions forf (u)5u(12u),
d(u)[1, and l 51. Each curve represents the local proportion
the first one of two species as a function of the heightxP@0,1# in
the vessel.x has units of length, whereasu(x) represents a relative
concentration and is thus dimensionless. The family of curve
parametrized either by the initial value or by the total mass.

FIG. 2. Segregation of two types of particles due to diffusi
and convection. System~6! with d(u)[D50.1 andu(0)50.01. x
has dimensions of length,u(x) is dimensionless.
7-3
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JOEL BRAUN PHYSICAL REVIEW E 64 011307
tration at the top. We give the exact expression for the to
mass of speciesu5u1 as a function of the initial valueu0 as

E
0

l

u~x!dx5E
0

l u0

~12u0!e2x/D1u0
dx

5D• ln@~12u0!1u0el /D#. ~14!

The dependence ofū on u0 is shown in Fig. 3. We empha
size at this point that the example discussed in this sectio
a certain sense characterizes the qualitative behavior ofany
system of the form~6!. In a general situation some profile
may be increasing, some decreasing, but they always for
set of nonintersecting layers.

At the end of the section we briefly discuss the gene
case of more than two types of grains, thus underlining
particular nature of the casen52. Forn>3 we cannot rule
out that the process of reshuffling by convection and dif
sion leads to rather complicated dynamics as, for exam
oscillatory behavior. One could imagine as well that the s
tem approaches different stationary solutions with the sa
proportion of total masses depending on the initial distrib
tion. Such phenomena do not occur forn52. Stationary so-
lutions can still be parametrized by their initial data~as en-
sured by the existence and uniqueness theorem for ordi
differential equations!, but there may be several solutions f
a given vector of proportions of total masses. A more
tailed analysis of stationary solutions in the general cas
reported in the following section.

FIG. 3. The total mass of speciesu as a function of the initial
valueu0. Parameter valuesD51 andl 51. The resulting map is a
bijection of the interval@0,1#. Both coordinates represent relativ
concentrations without units.
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IV. STATIONARY SOLUTIONS IN THE CASE OF n
SPECIES

The stationary solutions of system~2! with boundary con-
ditions~3! are solutions of the system of ordinary differenti
equations

u̇5g~u!, ~15!

where g(u)5f(u)/d(u). Let G be the solution operator o
~15!, i.e.,

d

dt
G~ t,u!5g„G~ t,u!…,

G~0,u!5u.

From hypotheses~c! and ~d! it follows that the functiong
satisfies

ui50⇒gi~u!50, ~16!

( gi~u![0. ~17!

Define the simplex~generalized triangle or tetrahedron! of
probability vectors

S5H uPRnuui>0, i 51, . . . ,n, (
i 51

n

ui51J .

The setS is the set of local distributions of then species. The
conditions~16! and ~17! ensure that solutions of Eqs.~15!
starting inS remain inS for all timest ~positive or negative!.
HenceS is invariant with respect to the flow of Eq.~15!. If
G(t,u), 0<t< l is the solution of Eq.~15! starting from
u(0)5u, then

E
0

l

G~ t,u!dt5ūl ~18!

defines the vectorū of total masses of then species. The nex
theorem shows that for any distributionūPS of total masses
there isat least onestationary solution~exactly one in the
casen52 by Proposition 1!.

Theorem 1Assume Eqs.~16! and ~17!. For everyūPS
there is at least oneuPS such that Eq.~18! holds.

The proof is given in the Appendix. In general there w
be more than one stationary solution for a given mass dis
bution. This can be seen from the following argument. A
sume the system~15! has a nonconstant periodic solutio
with minimal periodv.0. Choosel 5v. Then for all points
u on the periodic orbit we get the same valueū. In this
example we can extend the function from@0,l # periodically
to all of the real axis to get an infinitely high vessel with
periodic distribution of species. Then the phase of this d
tribution can be chosen arbitrarily. We do not claim that su
a choice of the functionf or g is realistic.
7-4
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SEGREGATION OF GRANULAR MEDIA BY DIFFUSION . . . PHYSICAL REVIEW E64 011307
We reformulate the result in terms of boundary val
problems of second order systems of ordinary differen
equations. Theorem 1 says that the boundary value prob

v̈5g~ v̇!, v~0!50, v~ l !5ūl

has at least one solution inS for every ūPS.

V. A SIMPLE COMPETITION LAW

There is one choice of the vector fieldf for which we can
show uniqueness of the stationary state in any dimension.
Here we assume that particles of thei th species have apre-
ferredvelocity mi and that their actual velocity is defined b
the balance of mass. In other words, the actual velocity
each point is the difference of its preferred velocity and
mean velocity of all particles at that space point. We cho
D5const and

f~u!5Mu2F(
i 51

n

~Mu! i Gu, ~19!

whereM5(mid i j ) is a diagonal matrix of ordern and themi
are strictly positive constants. Without loss of generality
assumem1.m2.•••.mn . In coordinate notation the ordi
nary differential equation~15! reads

d

dx
ui5

1

D Fmiui2S (
k51

n

mkukD ui G . ~20!

This equation is just a renormalization of the linear syst
u̇5Mu. In theoretical ecology this type of system has be
called thereplicator equation~for an overview on replicator
equations see for example,@27#!. The solution of Eq.~20!
can be explicitly given as

ui~x!5
emix/Dui~0!

(
j 51

n

emjx/Duj~0!

. ~21!

Then the equation

E
0

l emix/Dui

(
j 51

n

emjx/Duj~0!

dx5 l ū i ~22!

establishes the connection between stationary solutions
total masses.

Theorem 2. Consider the system~2! with boundary con-
dition ~3! where the nonlinearity is given by Eq.~19!. For
any choiceūPS of the total masses there is exactly o
stationary solution.

The proof is given in the Appendix.
If we choose n52 then f 1(u1 ,u2)5m1u12(m1u1

1m2u2)u15(m12m2)u1(12u1). Hence we get essentiall
Eq. ~12!, up to the constant factorm12m2.
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VI. DISCUSSION

The diffusion-convection model discussed in this pap
describes segregation of particles of varying size and ph
cal qualities such as specific density of the material or s
face structure in a vertical vessel. In the case of only t
competingspecies the dynamics are predicted to be relativ
simple. Stationary solutions are monotone functions, and
ery time-dependent solution eventually reaches a stable s
In the general case of three or more species the dynamics
exhibit far more complicated behavior. Stationary states
in general not monotone any more and there can be diffe
stationary solutions for a given proportion of total masses
the vessel. However, for every given proportion of to
masses there is at least one stationary distribution. Uniq
ness can be shown under relatively strong conditions on
convection functionf. An important example is the compet
tive kinetics corresponding to the Masliyah kinetics in se
mentation models or the so-calledreplicator kineticsin bio-
logical models. Our model is unrealistic insofar as it does
account for compaction or compressibility effects.
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APPENDIX

1. The hyperbolic problem

If we consider a system of the form of Eq.~2! without
diffusion, i.e., a model with pure convection, then we ge
totally different problem. For example, consider the casen
52. Equation~6! becomes the conservation law

ut1 f ~u!x50. ~A1!

The characteristic differential equations~with parameters)
are ṫ51, ẋ5 f 8(u), u̇50, hence the characteristic curves a
straight linesx5x01 f 8(u0)(t2t0). If the functionu0(x) is
not monotone, then the behavior can be very complicated
however, we letD(u) go to zero, then we get aviscosity
solution. In particular, the stationary solution becomes a s
function.

2. Conservation of mass and positivity

From the differential equation~2! and the boundary con
dition ~3! we get

d

dtE0

l

udx5E
0

l

@D~u!ux2f~u!#xdx5@D~u!ux2f~u!#u0
l 50.

~A2!

Hence total mass is preserved. Next, in view of Eqs.~4! and
~5! and hypothesis~c!, the scalar function(ui satisfies the
diffusion equation
7-5



l,

he

at
t

ht
ig

ict
e
-
.
t

nd
tin
ri
n
eu
nd
d
iso

n

ss

t
a
e
th

to

-

e

the
al

JOEL BRAUN PHYSICAL REVIEW E 64 011307
S ( ui D
t

5( uit5Fd~u!S ( ui D
x
G

x

~A3!

and the boundary condition

S ( ui D
x
~0!5S ( ui D

x
~ l !50. ~A4!

We have(ui
0(x)[1. Hence both the given functionu and

the function[1 satisfy the differential equation~A3! and the
boundary condition~A4!, and therefore they are identica
(ui(t,x)[1. This shows that everywhere masses add up
1.

Now we sketch the proof that positivity is preserved. T
differential equation~2! reads in component notation

uit5@d8~u!•ux#uix1d~u!uixx2@ f i8~u!•ux#.

Notice that the brackets are inner products. Suppose th
time t5 t̄ the i th componentui vanishes for the first time a
x5 x̄P@0,l #. First assume 0, x̄, l . Then uix( t̄ ,x̄)50,
uit( t̄ ,x̄)<0, uixx( t̄ ,x̄)>0. Hence at this point

uit5d~u!uixx2(
j Þ i

] f i

]uj

]uj

]x
.

The left-hand side is nonpositive, the first term on the rig
hand side is non-negative, and the second term on the r
hand side vanishes in view of property~e!. Hence we would
have a contradiction if one of the inequalities were str
This argument shows how property~e! enters. Next assum
x̄50 ~or x̄5 l ). Thenu( t̄ ,x) goes to zero from positive val
ues, and so doesux(t,x) in view of the boundary condition
It seems that it isunlikely thatu andux pass through zero a
the same time.

There is a well-developed machinery for maximum a
comparison theorems for parabolic equations and for get
strict inequalities from weak inequalities by using compa
son functions~see @28–30#!. It appears that the results i
these monographs apply only to standard Dirichlet or N
mann conditions or to boundary conditions of the third ki
with strong monotonicity properties. For our type of boun
ary condition we had to use a specially designed compar
function and some local estimates.

3. Proof of Proposition 1

We note that condition~10! ensures that every solutio
u(x) of Eq. ~8! with initial condition u05u(0)PM :
5@0,1# never leavesM. By the existence and uniquene
theorem for ordinary differential equations, Eq.~8! has ex-
actly one solution for eachu0PM . By the same argumen
solution curves cannot intersect and thus lie one above e
other in the way indicated in Fig. 1. Each solution is eith
increasing or decreasing or constant. In other words,
mappingF:u0°ū is strictly monotone and therefore one
one. Furthermore, the solutions of Eq.~8! depend continu-
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in view of Eq. ~10!. As a consequence, the mappingF is
onto.

4. Proof of Proposition 2

Define the function of two variables (x,t),

v:5d~u!ux2 f ~u!.

Then

v t5d8~u!utux1d~u!uxt2 f 8~u!ut ,

vx5ut ,

and thus

v t5a~ t,x!vxx1b~ t,x!vx ~A5!

with a(t,x)5d„u(t,x)…, b(t,x)5d8(u)ux2 f 8(u). The coef-
ficients a and b are bounded. Clearly,v vanishes on the
boundary$0,l % in view of Eq.~7!. With the smoothness con
ditions requested, the solutionv goes to zero together with
its space derivative~ @28#, p. 158, Theorem 1!.

We point out the following fact: The functionv
5d(u)ux2 f (u) satisfies Eq.~A5!. Suppose at timet50

d~u!ux> f ~u! ~A6!

@or d(u)ux< f (u)]. Then by the comparison principle, th
same inequality holds for all positivet. If, for example,f is
non-negative~see, for example, Sec. III! and Eq.~A6! holds
initially, then u will be monotone inx for all time.

5. Proof of Theorem 1

Under the hypotheses of Sec. II the system lives on
simplexS. In the following argument we use the topologic
degree~see@31#!. Let L be some positive number~the largest
height of the vessel we are interested in!. Define the function
H:@0,L#3Rn→Rn by

H~ l ,u!5
1

l E0

l

G~s,u!ds for l .0, ~A7!

H~0,u!5u. ~A8!

The functionH is continuous and it maps@0,L#3S into S,
H(0,•) is the identity.

Let uP]S, i.e.,ui50 for somei. ThenGi( l ,u)50 for the
samei and hence alsoHi( l ,u)50. Conversely, letH( l ,u)
P]S for some l and u. Then Hi( l ,u)50 for some i and
hence*0

l Gi(t,u)dt50 or, equivalently,Gi(t,u)50 for all
tP@0,l #. Thenui50, which meansuP]S.

In short,H( l ,•) maps the interiorS° of S into the interior
and the boundary]S into itself. Even each lower-
dimensional face of the boundary is mapped into itself.

Now let ūPS°. ThenH( l ,u)Þū for all uP]S. Thus,H
defines a homotopy ofS and the degree deg(H( l ,•),S,ū) is
well defined for alll P@0,L#. Since deg@H(0,•),S,ū#51, we
have deg@H( l ,•),S,ū#51 for all l P@0,L# and hence the
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equationH( l ,u)5ū has at least one zero inuPS for all l
P@0,L# ~and hence for all positivel ).

Now assumeūP]S. Thenūi50 for somei. Then, in the
above argument, replaceS by the face ofS corresponding to
the positive components ofū.

In the general casen>3 uniqueness does not hold.

6. Proof of Theorem 2

We can assumeD51. In this case the functionH( l ,•),
for l .0, is given componentwise by

Hi~ l ,u!5
1

l E0

l emixui

(
j 51

n

emjxuj

dx. ~A9!

H( l ,•) mapsS onto S ~as shown in the proof of Theorem
4.1!. Of courseH(0,u)5u on S as before.

Now we want to compute the Jacobian ofH( l ,•) at a
point uPS. For that purpose we interpret Eq.~A9! as a map-
ping from Rn→Rn and later restrict to the setS. The Jaco-
bian J has elements
ro

s,

en

re

.

01130
]Hi

]ui
5

1

l E0

l 1

S (
k51

n

emkxukD 2 emixS (
kÞ i

emkxukDdx.0,

]Hi

]uj
52

1

l E0

l e(mi1 j j )xui

S (
k51

n

emkxukD 2 dx,0, iÞ j .

Thus, J has positive diagonal elements and negat
off-diagonal elements. We have (Hi( l ,u)
5(1/l )*0

l @(Gi(t,u)#dt50. Hence the row vector
e:5(1, . . . ,1) is aleft eigenvector with eigenvalue 0 an
this eigenvector is perpendicular to the simplexS. The weak
Hadamard criterion~or the Perron-Frobenius theorem fo
positive matrices! ensures thatl50 is a simple eigenvalue
Hence the restriction ofH to the simplexS has a JacobianJ
with full rank n21 andH( l ,•) is a diffeomorphism ofS.
ett.

.

s.

n.

-
n-
@1# D. C. Hong, P. V. Quinn, and S. Luding, Phys. Rev. Lett.86,
3423 ~2001!.

@2# S. Luding, E. Cle´ment, J. Rajchenbach, and J. Duran, Eu
phys. Lett.36, 247 ~1996!.

@3# S. Luding, M. Huthmann, S. McNamara, and A. Zippeliu
Phys. Rev. E58, 3416~1998!.

@4# S. Luding, O. Strauss, and S. McNamara, inSegregation in
Granular Flows, edited by T. Rosato, IUTAM symposium
~Kluwer Academic Publishers, Stuggart, in press!.

@5# J. T. Jenkins and F. Mancini, J. Appl. Mech.54, 27 ~1987!.
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